Engineering (Aug 2024)

An Interpretable Light Attention–Convolution–Gate Recurrent Unit Architecture for the Highly Accurate Modeling of Actual Chemical Dynamic Processes

  • Yue Li,
  • Ning Li,
  • Jingzheng Ren,
  • Weifeng Shen

Journal volume & issue
Vol. 39
pp. 104 – 116

Abstract

Read online

To equip data-driven dynamic chemical process models with strong interpretability, we develop a light attention–convolution–gate recurrent unit (LACG) architecture with three sub-modules—a basic module, a brand-new light attention module, and a residue module—that are specially designed to learn the general dynamic behavior, transient disturbances, and other input factors of chemical processes, respectively. Combined with a hyperparameter optimization framework, Optuna, the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process. The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models, including the feedforward neural network, convolution neural network, long short-term memory (LSTM), and attention-LSTM. Moreover, compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1, the LACG parameters are demonstrated to be interpretable, and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM. This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling, paving a route to intelligent manufacturing.

Keywords