npj Systems Biology and Applications (Jan 2021)

Integrative computational approach identifies drug targets in CD4+ T-cell-mediated immune disorders

  • Bhanwar Lal Puniya,
  • Rada Amin,
  • Bailee Lichter,
  • Robert Moore,
  • Alex Ciurej,
  • Sydney J. Bennett,
  • Ab Rauf Shah,
  • Matteo Barberis,
  • Tomáš Helikar

DOI
https://doi.org/10.1038/s41540-020-00165-3
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 18

Abstract

Read online

Abstract CD4+ T cells provide adaptive immunity against pathogens and abnormal cells, and they are also associated with various immune-related diseases. CD4+ T cells’ metabolism is dysregulated in these pathologies and represents an opportunity for drug discovery and development. Genome-scale metabolic modeling offers an opportunity to accelerate drug discovery by providing high-quality information about possible target space in the context of a modeled disease. Here, we develop genome-scale models of naïve, Th1, Th2, and Th17 CD4+ T-cell subtypes to map metabolic perturbations in rheumatoid arthritis, multiple sclerosis, and primary biliary cholangitis. We subjected these models to in silico simulations for drug response analysis of existing FDA-approved drugs and compounds. Integration of disease-specific differentially expressed genes with altered reactions in response to metabolic perturbations identified 68 drug targets for the three autoimmune diseases. In vitro experimental validation, together with literature-based evidence, showed that modulation of fifty percent of identified drug targets suppressed CD4+ T cells, further increasing their potential impact as therapeutic interventions. Our approach can be generalized in the context of other diseases, and the metabolic models can be further used to dissect CD4+ T-cell metabolism.