Communications Biology (Nov 2021)

Transcript-targeted analysis reveals isoform alterations and double-hop fusions in breast cancer

  • Shinichi Namba,
  • Toshihide Ueno,
  • Shinya Kojima,
  • Kenya Kobayashi,
  • Katsushige Kawase,
  • Yosuke Tanaka,
  • Satoshi Inoue,
  • Fumishi Kishigami,
  • Shusuke Kawashima,
  • Noriko Maeda,
  • Tomoko Ogawa,
  • Shoichi Hazama,
  • Yosuke Togashi,
  • Mizuo Ando,
  • Yuichi Shiraishi,
  • Hiroyuki Mano,
  • Masahito Kawazu

DOI
https://doi.org/10.1038/s42003-021-02833-4
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 16

Abstract

Read online

Namba et al develop a new pipeline called MuSTA to enable the efficient assembly of transcriptome from long-read sequencing data of breast cancer samples. This method enables the authors to discover subtype-specific isoforms, find that fusion transcript structures depend on their genomic context and identify a double-hop fusion that results in aberrant expression of an endogenous retroviral gene.