International Journal of Applied Mathematics and Computer Science (Jun 2015)

A generalization of the graph Laplacian with application to a distributed consensus algorithm

  • Zhai Guisheng

DOI
https://doi.org/10.1515/amcs-2015-0027
Journal volume & issue
Vol. 25, no. 2
pp. 353 – 360

Abstract

Read online

In order to describe the interconnection among agents with multi-dimensional states, we generalize the notion of a graph Laplacian by extending the adjacency weights (or weighted interconnection coefficients) from scalars to matrices. More precisely, we use positive definite matrices to denote full multi-dimensional interconnections, while using nonnegative definite matrices to denote partial multi-dimensional interconnections. We prove that the generalized graph Laplacian inherits the spectral properties of the graph Laplacian. As an application, we use the generalized graph Laplacian to establish a distributed consensus algorithm for agents described by multi-dimensional integrators.

Keywords