Data in Brief (Dec 2019)

Performance data of CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives

  • Muhammad Jahandar,
  • Nasir Khan,
  • Muhammad Jahankhan,
  • Chang Eun Song,
  • Hang Ken Lee,
  • Sang Kyu Lee,
  • Won Suk Shin,
  • Jong-Cheol Lee,
  • Sang Hyuk Im,
  • Sang-Jin Moon

Journal volume & issue
Vol. 27

Abstract

Read online

The data provided in this data set is the study of organic-inorganic hybrid perovskite solar cells fabricated through incorporating the small amounts of ammonium halide NH4X (X = F, Cl, Br, I) additives into a CH3NH3PbI3 (MAPbI3) perovskite solution and is published as “High-Performance CH3NH3PbI3 Inverted Planar Perovskite Solar Cells via Ammonium Halide Additives”, available in Journal of Industrial and Engineering Chemistry [1]. A compact and uniform perovskite absorber layer with large perovskite crystalline grains, is realized by simply incorporating small amounts of additives into precursor solutions, and utilizing the anti-solvent engineering technique to control the nucleation and growth of perovskite crystal, turning out the enhanced device efficiency (NH4F: 14.88 ± 0.33%, NH4Cl: 16.63 ± 0.21%, NH4Br: 16.64 ± 0.35%, and NH4I: 17.28 ± 0.15%) compared to that of a reference MAPbI3 device (Ref.: 12.95 ± 0.48%). In addition, this simple technique of ammonium halide addition to precursor solutions increase the device reproducibility as well as long term stability. Keywords: CH3NH3PbI3 perovskite, Inverted planar structure, Ammonium halide additives, anti-solvent engineering, Perovskite grain size