Materials (Oct 2022)

Characterization of Porous CuO Films for H<sub>2</sub>S Gas Sensors

  • Dawoon Jung,
  • Sehoon Hwang,
  • Hyun-Jong Kim,
  • Jae-Hee Han,
  • Ho-Nyun Lee

DOI
https://doi.org/10.3390/ma15207270
Journal volume & issue
Vol. 15, no. 20
p. 7270

Abstract

Read online

Using a thermal evaporator, various porous Cu films were deposited according to the deposition pressure. CuO films were formed by post heat treatment in the air. Changes in morphological and structural characteristics of films were analyzed using field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Relative density and porosity were quantitatively calculated. CuO films with various pores ranging from 39.4 to 95.2% were successfully manufactured and were applied as gas sensors for H2S detection on interdigitated electrode (IDE) substrate. Resistance change was monitored at 325 °C and an increase in porosity of the film improved the sensor performance. The CuO-10 gas sensor with a high porosity of 95.2% showed a relatively high response (2.7) and a fast recovery time (514 s) for H2S 1.5 ppm. It is confirmed that the porosity of the CuO detection layer had a significant effect on response and recovery time.

Keywords