Antimicrobial Stewardship & Healthcare Epidemiology (Jan 2023)

Nasopharyngeal rapid diagnostic testing to reduce unnecessary antibiotic use and individualize management of acute otitis media

  • Thresia Sebastian,
  • Mohammad Usama Toseef,
  • Melanie Kurtz,
  • Holly M. Frost

DOI
https://doi.org/10.1017/ash.2023.127
Journal volume & issue
Vol. 3

Abstract

Read online

Abstract Background: Acute otitis media (AOM) is the most common indication for antibiotics in children. The associated organism can influence the likelihood of antibiotic benefit and optimal treatment. Nasopharyngeal polymerase chain reaction can effectively exclude the presence of organisms in middle-ear fluid. We explored the potential cost-effectiveness and reduction in antibiotics with nasopharyngeal rapid diagnostic testing (RDT) to direct AOM management. Methods: We developed 2 algorithms for AOM management based on nasopharyngeal bacterial otopathogens. The algorithms provide recommendations on prescribing strategy (ie, immediate, delayed, or observation) and antimicrobial agent. The primary outcome was the incremental cost-effectiveness ratio (ICER) expressed as cost per quality-adjusted life day (QALD) gained. We used a decision-analytic model to evaluate the cost-effectiveness of the RDT algorithms compared to usual care from a societal perspective and the potential reduction in annual antibiotics used. Results: An RDT algorithm that used immediate prescribing, delayed prescribing, and observation based on pathogen (RDT-DP) had an ICER of $1,336.15 per QALD compared with usual care. At an RDT cost of $278.56, the ICER for RDT-DP exceeded the willingness to pay threshold; however, if the RDT cost was <$212.10, the ICER was below the threshold. The use of RDT was estimated to reduced annual antibiotic use, including broad-spectrum antimicrobial use, by 55.7% ($4.7 million for RDT vs $10.5 million for usual care). Conclusion: The use of a nasopharyngeal RDT for AOM could be cost-effective and substantially reduce unnecessary antibiotic use. These iterative algorithms could be modified to guide management of AOM as pathogen epidemiology and resistance evolve.