Machines (Feb 2022)

Tool Wear Rate and Surface Integrity Studies in Wire Electric Discharge Machining of NiTiNOL Shape Memory Alloy Using Diffusion Annealed Coated Electrode Materials

  • Vinayak N. Kulkarni,
  • Vinayak N. Gaitonde,
  • Manjaiah Mallaiah,
  • Ramesh S. Karnik,
  • Joao Paulo Davim

DOI
https://doi.org/10.3390/machines10020138
Journal volume & issue
Vol. 10, no. 2
p. 138

Abstract

Read online

Electrode material used in wire electric discharge machining (WEDM/wire EDM) plays a vital role in determining the machined component quality. In particular, when machining hard materials like nickel titanium/NiTi (NiTiNOL) shape memory alloy, the quality of electrode material is important as it may have adverse effects on the surface properties of the alloy. Different electrode materials give different performances, as each electrode material is made up of different conductivity, compositions and tensile strength. Therefore, detailed experimental studies have been carried out to understand the effect of diffusion annealed coated wires (X-type and A-type) on NiTiNOL SMA during the wire EDM process. The tool wear rate and surface roughness responses have been studied for both the electrode materials against different wire EDM variables such as pulse time, pause time, wire feed and spark gap set voltage. The impact of these process parameters on the stated output responses has been analyzed and further surface and subsurface analysis of the machined component has been carried out to understand the impact of diffusion annealed electrode materials during the wire EDM process. The investigation reveals that an A-type diffusion annealed coated wire is found to be most suitable in terms of tool wear rate, surface roughness and surface integrity during machining of NiTiNOL shape memory alloy compared to X-type and traditional brass-based electrode materials. Surface topographical properties were studied using confocal microscopic analysis and scanning electron microscope (SEM) with energy-dispersive spectroscopy (EDS) analysis. The subsurface analysis like microhardness and recast layer thickness was also studied for both the wires against different machining conditions.

Keywords