Scientific Reports (Feb 2024)
A multi-objective optimization evaluation model for seismic performance of slopes reinforced by pile-anchor system
Abstract
Abstract The significance means of the seismic reinforcement effect of a pile-anchor system for slope reinforcement has been widely recognized. However, cases of deformation failure and instability sliding of the pile-anchor system itself and the reinforced slope under seismic action continue to be recorded. Therefore, it is crucial to evaluate the seismic performance of slopes reinforced by a pile-anchor system to prevent the system’s failure. Current evaluation models of a slope reinforced by a pile-anchor system mainly focus on slope stability; however, the safety of the pile-anchor system itself is not sufficiently considered in these models. Consequently, in this study, we propose a multi-objective optimization evaluation (MOE) model for evaluating the seismic performance of slopes reinforced by a pile-anchor system that considers slope stability, safety of the pile-anchor system, and dynamic response of the slope. This model considers slope displacement, acceleration amplification factor of a slope, pile displacement, and anchor displacement as negative indexes, and anti-slide pile bending moment, shear force, and anchor axial force as intermediate indexes. The comprehensive weight of relevant indexes is obtained by combining subjective and objective weights, and the seismic reinforcement effect of the pile-anchor system is evaluated subsequently. In conclusion, the MOE model proposed in this study provides a novel solution for the optimization evaluation of a slope reinforced by a pile-anchor system in forthcoming projects.
Keywords