International Journal of Genomics (Jan 2020)

Exceptional Enlargement of the Mitochondrial Genome Results from Distinct Causes in Different Rain Frogs (Anura: Brevicipitidae: Breviceps)

  • Keitaro Hemmi,
  • Ryosuke Kakehashi,
  • Chiaki Kambayashi,
  • Louis Du Preez,
  • Leslie Minter,
  • Nobuaki Furuno,
  • Atsushi Kurabayashi

DOI
https://doi.org/10.1155/2020/6540343
Journal volume & issue
Vol. 2020

Abstract

Read online

The mitochondrial (mt) genome of the bushveld rain frog (Breviceps adspersus, Brevicipitidae, Afrobatrachia) is the largest (28.8 kbp) among the vertebrates investigated to date. The major cause of genome size enlargement in this species is the duplication of multiple genomic regions. To investigate the evolutionary lineage, timing, and process of mt genome enlargement, we sequenced the complete mtDNAs of two congeneric rain frogs, B. mossambicus and B. poweri. The mt genomic organization, gene content, and gene arrangements of these two rain frogs are very similar to each other but differ from those of B. adspersus. The B. mossambicus mt genome (22.5 kbp) does not differ significantly from that of most other afrobatrachians. In contrast, the B. poweri mtDNA (28.1 kbp) is considerably larger: currently the second largest among vertebrates, after B. adspersus. The main causes of genome enlargement differ among Breviceps species. Unusual elongation (12.5 kbp) of the control region (CR), a single major noncoding region of the vertebrate mt genome, is responsible for the extremely large mt genome in B. poweri. Based on the current Breviceps phylogeny and estimated divergence age, it can be concluded that the genome enlargements occurred independently in each species lineage within relatively short periods. Furthermore, a high nucleotide substitution rate and relaxation of selective pressures, which are considered to be involved in changes in genome size, were also detected in afrobatrachian lineages. Our results suggest that these factors were not direct causes but may have indirectly affected mt genome enlargements in Breviceps.