PLoS ONE (Jan 2024)
Academic achievement prediction in higher education through interpretable modeling.
Abstract
Student academic achievement is an important indicator for evaluating the quality of education, especially, the achievement prediction empowers educators in tailoring their instructional approaches, thereby fostering advancements in both student performance and the overall educational quality. However, extracting valuable insights from vast educational data to develop effective strategies for evaluating student performance remains a significant challenge for higher education institutions. Traditional machine learning (ML) algorithms often struggle to clearly delineate the interplay between the factors that influence academic success and the resulting grades. To address these challenges, this paper introduces the XGB-SHAP model, a novel approach for predicting student achievement that combines Extreme Gradient Boosting (XGBoost) with SHapley Additive exPlanations (SHAP). The model was applied to a dataset from a public university in Wuhan, encompassing the academic records of 87 students who were enrolled in a Japanese course between September 2021 and June 2023. The findings indicate the model excels in accuracy, achieving a Mean absolute error (MAE) of approximately 6 and an R-squared value near 0.82, surpassing three other ML models. The model further uncovers how different instructional modes influence the factors that contribute to student achievement. This insight supports the need for a customized approach to feature selection that aligns with the specific characteristics of each teaching mode. Furthermore, the model highlights the importance of incorporating self-directed learning skills into student-related indicators when predicting academic performance.