Chemosensors (Jul 2024)
N-Doped Nanocrystalline Graphite Electrochemical Sensor for Oleuropein Detection from Extra Virgin Olive Oils
Abstract
A nitrogen-doped nanocrystalline electrochemical graphite sensor for the sensitive determination of oleuropein (OL) from extra virgin olive oils (EVOOs) is presented. The sensor was developed by the deposition of nanocrystalline graphite (NCG) using plasma-enhanced chemical vapour deposition (PECVD) on silicon wafers. Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction analysis (XRD) were used to characterise the microstructure and morphology of the developed materials. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV) were used to investigate the electrochemical properties of the material and the performance of the sensor. The developed sensor showed good analytical performance against OL over a concentration range of 5.00–500.00 µM, with a good detection limit of 3.93 µM and a good sensitivity of 0.057 µA µM−1. The reproducibility of the electrochemical sensor was excellent, with a relative standard deviation (RSD) of 8.56% for seven measurements.
Keywords