Scientific Reports (Jul 2024)
A two-tier feature selection method for predicting mortality risk in ICU patients with acute kidney injury
Abstract
Abstract Acute kidney injury (AKI) is one of the most important lethal factors for patients admitted to intensive care units (ICUs), and timely high-risk prognostic assessment and intervention are essential to improving patient prognosis. In this study, a stacking model using the MIMIC-III dataset with a two-tier feature selection approach was developed to predict the risk of in-hospital mortality in ICU patients admitted for AKI. External validation was performed using separate MIMIC-IV and eICU-CRD. The area under the curve (AUC) was calculated using the stacking model, and features were selected using the Boruta and XGBoost feature selection methods. This study compares the performance of a stacking model using two-tier feature selection with a model using single-tier feature selection (XGBoost: 85; Boruta: 83; two-tier: 0.91). The predictive effectiveness of the stacking model was further validated by using different datasets (Validation 1: 0.83; Validation 2: 0.85) and comparing it with a simpler model and traditional clinical scores (SOFA: 0.65; APACH IV: 0.61). In addition, this study combined interpretable techniques and causal inference to analyze the causal relationship between features and predicted outcomes.
Keywords