Journal of Lipid Research (Oct 1994)

Metabolism of emulsions containing medium- and long-chain triglycerides or interesterified triglycerides

  • M Hultin,
  • A Müllertz,
  • M A Zundel,
  • G Olivecrona,
  • T T Hansen,
  • R J Deckelbaum,
  • Y A Carpentier,
  • T Olivecrona

Journal volume & issue
Vol. 35, no. 10
pp. 1850 – 1860

Abstract

Read online

This study compares the clearing and metabolism of three different lipid emulsions. They had the same phospholipid emulsifier and similar particle sizes. In one (LLL) the core component was long-chain triglycerides (TG), the second (MMM/LLL) contained equal molar amounts of medium- and long-chain TG, the third (MLM) contained synthetic TG with medium-chain (M) fatty acids in the 1,3-positions and a long-chain (L) fatty acid in the 2-position. In model experiments with bovine lipoprotein lipase, the MMM component was hydrolyzed preferentially in the MMM/LLL emulsion so that the initial products were M fatty acids and M monoglycerides. The MLM emulsion, in contrast, gave M fatty acids and formation of L-MG (monoglyceride) throughout hydrolysis. For in vivo studies [3H]oleic acid was incorporated into the emulsion TG as marker for the long-chain component. After bolus injection to rats, the MMM/LLL and MLM emulsions were cleared more rapidly than the LLL emulsion. This was true at all TG loads studied (4-64 mg for a 200 g rat). The labeled oleic acid was oxidized somewhat more rapidly when administered in the MLM emulsion compared to the MMM/LLL emulsion. There were only slight differences in tissue distribution of label. Hence, differences in in vivo metabolism of the long-chain fatty acids were small compared to the marked differences in TG structure and in patterns of product release during in vitro lipolysis.