Frontiers in Environmental Science (Feb 2023)

Interactive effects of nutrients and salinity on zooplankton in subtropical plateau lakes with contrasting water depth

  • Li-Juan Yang,
  • Ya Tao,
  • Xia Jiang,
  • Ying Wang,
  • Ye-Hao Li,
  • Long Zhou,
  • Pu-Ze Wang,
  • Yuan-Yuan Li,
  • Xu Zhao,
  • Hai-Jun Wang,
  • Erik Jeppesen,
  • Erik Jeppesen,
  • Erik Jeppesen,
  • Erik Jeppesen,
  • Erik Jeppesen,
  • Ping Xie,
  • Ping Xie

DOI
https://doi.org/10.3389/fenvs.2023.1110746
Journal volume & issue
Vol. 11

Abstract

Read online

Both eutrophication and salinization are growing global environmental problems in freshwater ecosystems, threatening the water quality and various aquatic organisms. However, little is known about their interactive effects on theses stressors and the role of lake depth on these interactions. We used field surveys to compared zooplankton assemblages over four seasons in eight Yunnan Plateau lakes with different trophic states, salinization levels, and water depths. The results showed that: 1) the species number (S), density (DZoop), and biomass (BZoop) of zooplankton exhibited strong seasonal dynamics, being overall higher in the warm seasons. 2) Data collected over four seasons and summer data both revealed highly significant positive relationships of S, DZoop, and BZoop with total nitrogen (TN), total phosphorus (TP), and phytoplankton chlorophyll a (Chl a). 3) S, DZoop, and BZoop displayed a unimodal relationship with salinity, peaking at 400–1000 μS/cm (conductivity, to reflect salinity). 4) The two large-sized taxa (cladocerans and copepods) generally increased at low-moderate levels of TN, TP, Chl a, and Cond and was constant or decreased at high levels. The average body mass (biomass/density) of crustaceans decreased with increasing TN, TP, Chl a, and conductivity. Our findings indicate that zooplankton may be more vulnerable in deep lakes than in shallow lakes when exposed to conductivity stress even under mesotrophic conditions, and the overall decrease in size in zooplankton assemblages under the combined stress of eutrophication and salinization may result in a lowered grazing effect on phytoplankton.

Keywords