Cell Discovery (Sep 2024)
Molecular mechanism of prolactin-releasing peptide recognition and signaling via its G protein-coupled receptor
Abstract
Abstract Prolactin-releasing peptide (PrRP) is an RF-amide neuropeptide that binds and activates its cognate G protein-coupled receptor, prolactin-releasing peptide receptor (PrRPR), also known as GPR10. PrRP and PrRPR are highly conserved across mammals and involved in regulating a range of physiological processes, including stress response, appetite regulation, pain modulation, cardiovascular function, and potentially reproductive functions. Here we present cryo-electron microscopy structures of PrRP-bound PrRPR coupled to Gq or Gi heterotrimer, unveiling distinct molecular determinants underlying the specific recognition of the ligand’s C-terminal RF-amide motif. We identify a conserved polar pocket that accommodates the C-terminal amide shared by RF-amide peptides. Structural comparison with neuropeptide Y receptors reveals both similarities and differences in engaging the essential RF/RY-amide motifs. Our findings demonstrate the general mechanism governing RF-amide motif recognition by PrRPR and RF-amide peptide receptors, and provide a foundation for elucidating activation mechanisms and developing selective drugs targeting this important peptide–receptor system.