Poultry Science (Nov 2021)
The role of dynamin in absorbing lipids into endodermal epithelial cells of yolk sac membranes during embryonic development in Japanese quail
Abstract
ABSTRACT: Endodermal epithelial cells (EECs) within the yolk sac membrane (YSM) of avian embryos are responsible for the absorption and utilization of lipids. The lipids in the yolk are mostly composed of very low density lipoprotein (VLDL), uptake mainly depends on clathrin-mediated endocytosis (CME). The CME relies on vesicle formation through the regulation of dynamin (DNM). However, it is still unclear whether DNMs participate in avian embryonic development. We examined mRNA expression levels of several genes involved in lipid transportation and utilization in YSM during Japanese quail embryonic development using qPCR. The mRNA levels of DNM1 and DNM3 were elevated at incubation d 8 and 10 before the increase of SOAT1, CIDEA, CIDEC, and APOB mRNA's. The elevated gene expression suggested the increased demand for DNM activity might be prior to cholesteryl ester production, lipid storage, and VLDL transport. Hinted by the result, we further investigated the role of DNMs in the embryonic development of Japanese quail. A DNM inhibitor, dynasore, was injected into fertilized eggs at incubation d 3. At incubation d 10, the dynasore-injected embryo showed increased embryonic lethality compared to control groups. Thus, the activity of DNMs was essential for the embryonic development of Japanese quail. The activities of DNMs were also verified by the absorptions of fluorescent VLDL (DiI-yVLDL) in EECs. Fluorescent signals in EECs were decreased significantly after treatment with dynasore. Finally, EECs were pretreated with S-Nitroso-L-glutathione (GSNO), a DNM activator, for 30 min; this increased the uptake of DiI-yVLDL. In conclusion, DNMs serve a critical role in mediating lipid absorption in YSM. The activity of DNMs was an integral part of development in Japanese quail. Our results suggest enhancing lipid transportation through an increase of DNM activity may improve avian embryonic development.