Materials (Aug 2010)

Metal Dependence of Signal Transmission through MolecularQuantum-Dot Cellular Automata (QCA): A Theoretical Studyon Fe, Ru, and Os Mixed-Valence Complexes

  • Ken Tokunaga

DOI
https://doi.org/10.3390/ma3084277
Journal volume & issue
Vol. 3, no. 8
pp. 4277 – 4290

Abstract

Read online

Dynamic behavior of signal transmission through metal complexes [L5M-BL-ML5]5+ (M=Fe, Ru, Os, BL=pyrazine (py), 4,4’-bipyridine (bpy), L=NH3), which are simplified models of the molecular quantum-dot cellular automata (molecular QCA), is discussed from the viewpoint of one-electron theory, density functional theory. It is found that for py complexes, the signal transmission time (tst) is Fe(0.6 fs) < Os(0.7 fs) < Ru(1.1 fs) and the signal amplitude (A) is Fe(0.05 e) < Os(0.06 e) < Ru(0.10 e). For bpy complexes, tst and A are Fe(1.4 fs) < Os(1.7 fs) < Ru(2.5 fs) and Os(0.11 e) < Ru(0.12 e) <Fe(0.13 e), respectively. Bpy complexes generally have stronger signal amplitude, but waste longer time for signal transmission than py complexes. Among all complexes, Fe complex with bpy BL shows the best result. These results are discussed from overlap integral and energy gap of molecular orbitals.

Keywords