Energies (Sep 2018)

Dynamic Simulations of Adaptive Design Approaches to Control the Speed of an Induction Machine Considering Parameter Uncertainties and External Perturbations

  • Kamran Zeb,
  • Waqar U. Din,
  • Muhammad Adil Khan,
  • Ayesha Khan,
  • Umair Younas,
  • Tiago Davi Curi Busarello,
  • Hee Je Kim

DOI
https://doi.org/10.3390/en11092339
Journal volume & issue
Vol. 11, no. 9
p. 2339

Abstract

Read online

Recently, the Indirect Field Oriented Control (IFOC) scheme for Induction Motors (IM) has gained wide acceptance in high performance applications. The IFOC has remarkable characteristics of decoupling torque and flux along with an easy hardware implementation. However, the detuning limits the performance of drives due to uncertainties of parameters. Conventionally, the use of a Proportional Integral Differential (PID) controller has been very frequent in variable speed drive applications. However, it does not allow for the operation of an IM in a wide range of speeds. In order to tackle these problems, optimal, robust, and adaptive control algorithms are mostly in use. The work presented in this paper is based on new optimal, robust, and adaptive control strategies, including an Adaptive Proportional Integral (PI) controller, sliding mode control, Fuzzy Logic (FL) control based on Steepest Descent (SD), Levenberg-Marquardt (LM) algorithms, and Hybrid Control (HC) or adaptive sliding mode controller to overcome the deficiency of conventional control strategies. The main theme is to design a robust control scheme having faster dynamic response, reliable operation for parameter uncertainties and speed variation, and maximized torque and efficiency of the IM. The test bench of the IM control has three main parts: IM model, Inverter Model, and control structure. The IM is modelled in synchronous frame using d q modelling while the Space Vector Pulse Width Modulation (SVPWM) technique is used for modulation of the inverter. Our proposed controllers are critically analyzed and compared with the PI controller considering different conditions: parameter uncertainties, speed variation, load disturbances, and under electrical faults. In addition, the results validate the effectiveness of the designed controllers and are then related to former works.

Keywords