PLoS ONE (Jan 2011)

hSulf-1 gene exhibits anticancer efficacy through negatively regulating VEGFR-2 signaling in human cancers.

  • Weidan Ji,
  • Jiahe Yang,
  • Duanming Wang,
  • Lu Cao,
  • Weifeng Tan,
  • Haihua Qian,
  • Bin Sun,
  • Qijun Qian,
  • Zhengfeng Yin,
  • Mengchao Wu,
  • Changqing Su

DOI
https://doi.org/10.1371/journal.pone.0023274
Journal volume & issue
Vol. 6, no. 8
p. e23274

Abstract

Read online

BACKGROUND: Human sulfatase 1 (hSulf-1) is a heparin-degrading endosulfatase that desulfates cell surface heparan sulfate proteoglycans (HSPGs) in extracellular matrix and negatively modulates heparin-binding growth factor and cytokine signaling in cell proliferation. But hSulf-1 function is more complicated, and its molecular mechanism has not been well known. PRINCIPAL FINDINGS: To further investigate the functions of hSulf-1 gene in regulating the vascular endothelial growth factor receptor (VEGFR) signaling, a series of vectors expressing hSulf-1, hSulf-1 small hairpin RNA (shRNA) and VEGFR-2 shRNA were generated. hSulf-1 re-expression could downregualte the VEGFR-2 phosphorylation and inhibit cancer cell proliferation both in ovarian and hepatocellular cancer cell lines. Knockdown of hSulf-1 expression by hSulf-1 shRNA enhanced the recovery of high levels of phosphorylated VEGFR-2, and knockdown of VEGFR-2 expression by VEGFR-2 shRNA inhibited the proliferation activity of cancer cells in vitro to some extent. In human cancer xenografts in nude mice, tumor growth was inhibited markedly after injections of adenovirus expressing hSulf-1, with the tumor inhibition rates of 46.19% and 49.56% in ovarian and hepatocellular tumor models, respectively. hSulf-1 expression significantly reduced tumor microvessel density. CONCLUSIONS: The results demonstrated that hSulf-1 re-expression both in ovarian and hepatocellular cancer cells induces antitumor efficacy by attenuating the phosphorylation of VEGFR-2 and suppressing angiogenesis. Therefore, hSulf-1-mediated antiproliferation and antiangiogenesis could be a reasonable approach for cancer therapy.