International Journal of Nanomedicine (Feb 2017)

Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone

  • Ban J,
  • Zhang Y,
  • Huang X,
  • Deng GH,
  • Hou DZ,
  • Chen YZ,
  • Lu ZF

Journal volume & issue
Vol. Volume 12
pp. 1329 – 1339

Abstract

Read online

Junfeng Ban, Yan Zhang, Xin Huang, Guanghan Deng, Dongzhi Hou, Yanzhong Chen, Zhufen Lu Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China Abstract: Drug delivery carriers can maintain effective therapeutic concentrations in the eye. To this end, we developed lipid nanoparticles (L/NPs) in which the surface was modified with positively charged chitosan, which engaged in hydrogen bonding with the phospholipid membrane. We evaluated in vitro corneal permeability and release characteristics, ocular irritation, and drug dynamics of modified and unmodified L/NPs in aqueous humor. The size of L/NPs was uniform and showed a narrow distribution. Corneal permeation was altered by the presence of chitosan and was dependent on particle size; the apparent permeability coefficient of dexamethasone increased by 2.7 and 1.8 times for chitosan-modified and unmodified L/NPs, respectively. In conclusion, a chitosan-modified system could be a promising method for increasing the ocular bioavailability of unmodified L/NPs by enhancing their retention time and permeation into the cornea. These findings provide a theoretical basis for the development of effective drug delivery systems in the treatment of ocular disease. Keywords: ocular drug delivery system, local bioavailability, dexamethasone, eye drop administration

Keywords