PLoS ONE (Jan 2020)

Effects of Cord Blood Serum (CBS) on viability of retinal Müller glial cells under in vitro injury.

  • Carmen Ciavarella,
  • Marina Buzzi,
  • Elisa Bergantin,
  • Stefano Di Marco,
  • Giuseppe Giannaccare,
  • Emilio Campos,
  • Silvia Bisti,
  • Piera Versura

DOI
https://doi.org/10.1371/journal.pone.0234145
Journal volume & issue
Vol. 15, no. 6
p. e0234145

Abstract

Read online

Oxidative stress and inflammation determine retinal ganglion cell degeneration, leading to retinal impairment and vision loss. Müller glial cells regulate retinal repair under injury, through gliosis. Meanwhile, reactive gliosis can turn in pathological effects, contributing to neurodegeneration. In the present study, we tested whether Cord Blood Serum (CBS), rich of growth factors, might improve the viability of Müller cells under in vitro damage. BDNF, NGF, TGF-α, GDNF and EGF levels were measured in CBS samples by Human Magnetic Luminex Assay. CBS effects were evaluated on rat (rMC-1) and human (MIO-M1) Müller cells, under H2O2 and IL-1β damage. Cells grown with FBS or CBS both at 5% were exposed to stress and analyzed in terms of cell viability, GFAP, IL-6 and TNF-α expression. CBS was also administrated after treatment with K252a, inhibitor of the neurotrophin receptor Trk. Cell viability of rMC-1 and MIO-M1 resulted significantly improved when pretreated with CBS and exposed to H2O2 and IL-1β, in comparison to the standard culture with FBS. Accordingly, the gliosis marker GFAP resulted down-regulated following CBS priming. In parallel, we observed a lower expression of the inflammatory mediators in rMC-1 (TNF-α) and MIO-M1 (IL-6, TNF- α), especially in presence of inflammatory damage. Trk inhibition through K252a administration impaired the effects of CBS under stress conditions on MIO-M1 and rMC-1 viability, not significantly different from FBS condition. CBS is enriched with neurotrophins and its administration to rMC-1 and MIO-M1 attenuates the cytotoxic effects of H2O2 and IL-1β. Moreover, the decrease of the main markers of gliosis and inflammation suggests a promising use of CBS for neuroprotection aims. This study is a preliminary basis that prompts future investigations to deeply explore and confirm the CBS potential.