PLoS ONE (Jan 2015)

Bacterial Landscape of Bloodstream Infections in Neutropenic Patients via High Throughput Sequencing.

  • Peter Gyarmati,
  • Christian Kjellander,
  • Carl Aust,
  • Mats Kalin,
  • Lars Öhrmalm,
  • Christian G Giske

DOI
https://doi.org/10.1371/journal.pone.0135756
Journal volume & issue
Vol. 10, no. 8
p. e0135756

Abstract

Read online

BackgroundBloodstream infection (BSI) is a common and potentially life-threatening complication in patients with hematological malignancies and therapy-induced neutropenia. Administration of broad spectrum antibiotics has substantially decreased the mortality rate in febrile neutropenia, but bacterial infection is documented in only one-third or fewer of the cases. BSI is typically diagnosed by blood culture; however, this method can detect only culturable pathogens.MethodsIn the present study, a total of 130 blood samples from hematological patients receiving dose-intensive antitumoural treatment were subjected to 16S rRNA PCR and 62 of them were cultured. PCR positive samples were processed to high throughput sequencing by amplifying the V1-V3 regions of the 16S rRNA gene to obtain a full spectrum of bacteria present in BSI.ResultsFive phyla and 30 genera were identified with sequencing compared to 2 phyla and 4 genera with culture. The largest proportion of bacteria detected by sequencing belonged to Proteobacteria (55.2%), Firmicutes (33.4%) and Actinobacteria (8.6%), while Fusobacteria (0.4%) and Bacteroidetes (0.1%) were also detected. Ninety-eight percent of the bacteria identified by sequencing were opportunistic human pathogens and 65% belonged to the normal human microbiota.ConclusionsThe present study indicates that BSIs in neutropenic hosts contain a much broader diversity of bacteria, likely with host origin, than previously realized. The elevated ratio of Proteobacteria in BSI corroborates the results found in other systemic inflammatory diseases, such as inflammatory bowel disease or mucosal infections. This knowledge may become of value for tailoring antimicrobial drug administration.