Foods and Raw Materials (Jun 2015)

STUDY OF ORGANOLEPTIC, PHYSICAL-CHEMICAL AND TECHNOLOGICAL PROPERTIES OF THE PLANT ANALOGUES OF PHARMACEUTICAL GELATIN PRODUCTION FOR SOFT CAPSULES

  • Asyakina L.K.,
  • Belousova O.S.,
  • Avstrievskih A.N.,
  • Ostroumov L.A.

DOI
https://doi.org/10.12737/11170
Journal volume & issue
Vol. 3, no. 1
pp. 13 – 20

Abstract

Read online

Factors causing the urgency of developing technology of capsules based on non-traditional raw materials, which are mainly plant analogues are considered. Carboxymethylcellulose (CMC), starches, agar, hydroxypropyl methylcellulose (HPMC) are those of economic viability due to cheaper raw materials, consumer demand for the encapsulated drugs and biologically active additives (BAA). New different characteristics that satisfy a wide range of consumers, including those who do not use animal products for religious and / or behavioral (vegetarians) reasons are presented. In the course of studies complex characteristics of organoleptic, physical- chemical, optical, buffering, rheological and structural-mechanical properties, chemical reactivity indices of plant analogues of pharmaceutical gelatin, and combinations thereof to produce capsules were determined. The tested plant analogues of pharmaceutical gelatin for capsules exhibit the properties of weak electrolytes. Active amount of titratable groups in plant analogues of pharmaceutical gelatin from agar and HPMC is small, that makes the contribution of these compounds impossible when predicting the properties of the acid-base complex mixtures or solutions. Plant analogues of pharmaceutical gelatin from starches exhibit sufficiently strong buffering properties, the average number of active groups in a 1% starch solution being 1.9 mM, and the solution's pKa of plant analogues of pharmaceutical gelatin from pectins in the range from 4.3 to 4.9 pH units respectively. Solutions of plant analogues of pharmaceutical gelatin from carrageenans are chemically unstable in the presence of acid in the solution. Acidity tests showed, that among the studied samples of plant analogues of pharmaceutical gelatin from starch all the starch samples proved to have satisfactory characteristics. The complex properties of plant analogues of pharmaceutical gelatin were examined and the possibility of using plant analogues of pharmaceutical gelatin for soft capsules was proved.

Keywords