Теория и практика переработки мяса (Jan 2024)
Evaluation of meat and meat product oxidation and off-flavor formation: Managing oxidative changes
Abstract
One of the primary issues with processed foods during heat treatment and freezing storage is fat oxidation, which causes significant changes in fats due to their interaction with reactive oxygen species (ROS). This interaction leads to the creation of various aldehydes that have a high affinity for large molecules, such as proteins, leading to the formation of final products of advanced oxidation processes that contribute to food spoilage. Co-oxidation can also result in extensive damage. Another problem affecting the quality and nutritional value of meat products is protein oxidation, which can occur during storage via freezing and thawing or as a result of heat treatment. Heat treatment can cause physical and chemical changes, such as the loss of some essential amino acids and the transformation of certain amino acids into carbonyl compounds via various mechanisms. Protein oxidation is indicated by the accumulation of these carbonyl compounds, and the heat treatment can lead to the denaturation of myoglobin, which is responsible for the brown color of cooked meat and is influenced by several factors. Active protein aggregates can interact with the oxidation products of polyunsaturated fatty acids and with carbohydrate glycation or glycoxidation to produce Maillard products. It is critical to understand the oxidative changes that occur in fats and proteins in food, particularly in meat products, since these components are among the primary constituents of food.
Keywords