JMIR mHealth and uHealth (Mar 2019)
A Smartphone App to Assess Alcohol Consumption Behavior: Development, Compliance, and Reactivity
Abstract
BackgroundThere are disadvantages—largely related to cost, participant burden, and missing data—associated with traditional electronic methods of assessing drinking behavior in real time. This potentially diminishes some of the advantages—namely, enhanced sample size and diversity—typically attributed to these methods. Download of smartphone apps to participants’ own phones might preserve these advantages. However, to date, few researchers have detailed the process involved in developing custom-built apps for use in the experimental arena or explored methodological concerns regarding compliance and reactivity. ObjectiveThe aim of this study was to describe the process used to guide the development of a custom-built smartphone app designed to capture alcohol intake behavior in the healthy population. Methodological issues related to compliance with and reactivity to app study protocols were examined. Specifically, we sought to investigate whether hazard and nonhazard drinkers would be equally compliant. We also explored whether reactivity in the form of a decrease in drinking or reduced responding (“yes”) to drinking behavior would emerge as a function of hazard or nonhazard group status. MethodsAn iterative development process that included elements typical of agile software design guided the creation of the CNLab-A app. Healthy individuals used the app to record alcohol consumption behavior each day for 21 days. Submissions were either event- or notification-contingent. We considered the size and diversity of the sample, and assessed the data for evidence of app protocol compliance and reactivity as a function of hazard and nonhazard drinker status. ResultsCNLab-A yielded a large and diverse sample (N=671, mean age 23.12). On average, participants submitted data on 20.27 (SD 1.88) out of 21 days (96.5%, 20.27/21). Both hazard and nonhazard drinkers were highly compliant with app protocols. There were no differences between groups in terms of number of days of app use (P=.49) or average number of app responses (P=.54). Linear growth analyses revealed hazardous drinkers decreased their alcohol intake by 0.80 standard drinks over the 21-day experimental period. There was no change to the drinking of nonhazard individuals. Both hazard and nonhazard drinkers showed a slight decrease in responding (“yes”) to drinking behavior over the same period. ConclusionsSmartphone apps participants download to their own phones are effective and methodologically sound means of obtaining alcohol consumption information for research purposes. Although further investigation is required, such apps might, in future, allow for a more thorough examination of the antecedents and consequences of drinking behavior.