Foods and Raw Materials (Sep 2022)
Thermodynamic factor and vacuum crystallization
Abstract
Sucrose crystallization depends on various thermal phenomena, which makes them an important scientific issue for the sugar industry. However, the rationale and theory of sucrose crystallization still remain understudied. Among the least described problems is the effect of time and temperature on the condensation rate of sucrose molecules on crystallization nuclei in a supersaturated sugar solution. This article introduces a physical and mathematical heat transfer model for this process, as well as its numerical analysis. The research featured a supersaturated sugar solution during sucrose crystallization and focused on the condensation of sucrose molecules on crystallization nuclei. The study involved the method of physical and mathematical modeling of molecular mass transfer, which was subjected to a numerical analysis. While crystallizing in a vacuum boiling pan, a metastable solution went through an exothermal reaction. In a supersaturated solution, this reaction triggered a transient crystallization of solid phase molecules and a thermal release from the crystallization nuclei into the liquid phase. This exogenous heat reached 39.24 kJ/kg and affected the mass transfer kinetics. As a result, the temperature rose sharply from 80 to 86 °C. The research revealed the effect of temperature and time on the condensation of solids dissolved during crystalline sugar production. The model involved the endogenous heat factor. The numerical experiment proved that the model reflected the actual process of sucrose crystallization. The obtained correlations can solve a number of problems that the modern sugar industry faces.
Keywords