Успехи физики металлов (Mar 2022)

Anisotropic Phase Transformation Mechanism on Coarse-Grained and Fine-Grained Pure Titanium at Low-Temperature Plasma Nitriding

  • J. M. Windajanti, M. S. Rajapadni, D. J. D. H. Santjojo, M. A. Pamungkas, A. Abdurrouf, and T. Aizawa

DOI
https://doi.org/10.15407/ufm.23.01.090
Journal volume & issue
Vol. 23, no. 1
pp. 90 – 107

Abstract

Read online

The nitriding process of the coarse-grained and fine-grained pure titanium proceeded by multidirectional forging technique has been investigated at temperatures of 623, 673, and 723 K. The process was carried out by high-density radiofrequency-direct current plasma combined with a rectangular hollow cathode device. The result obtained is a significant increase in surface hardness with increasing holding temperature. The surface hardness increases due to forming a surface layer composed of δ-Ti2N, ε-Ti2N and TixNx observed from x-ray diffraction results. This paper explains the mechanism of surface layer formation. We also observed anisotropic phase transformation of titanium nitride through the right shift of the x-ray diffraction peaks. Diffused nitrogen atoms during the nitriding process cause a change in crystal orientation through structural transformation of the metastable δ-Ti2N to the stable ε-Ti2N. The structural reconstruction will continue by forming TixNx to achieve stoichiometric equilibrium. More compacting of the surface microstructure is also obtained by increasing nitriding temperature.

Keywords