Journal of Modern Power Systems and Clean Energy (Jan 2022)
Controlled Islanding Strategy Considering Uncertainty of Renewable Energy Sources Based on Chance-constrained Model
Abstract
Controlled islanding plays an essential role in preventing the blackout of power systems. Although there are several studies on this topic in the past, no enough attention is paid to the uncertainty brought by renewable energy sources (RESs) that may cause unpredictable unbalanced power and the observability of power systems after islanding that is essential for back-up black-start measures. Therefore, a novel controlled islanding model based on mixed-integer second-order cone and chance-constrained programming (MISOCCP) is proposed to address these issues. First, the uncertainty of RESs is characterized by their possibility distribution models with chance constraints, and the requirements, e. g., system observ-ability, for rapid back-up black-start measures are also considered. Then, a law of large numbers (LLN) based method is employed for converting the chance constraints into deterministic ones and reformulating the non-convex model into convex one. Finally, case studies on the revised IEEE 39-bus and 118-bus power systems as well as the comparisons among different models are given to demonstrate the effectiveness of the proposed model. The results show that the proposed model can result in less unbalanced power and better observability after islanding compared with other models.
Keywords