Hydrology and Earth System Sciences (Jan 2019)

An improved perspective in the spatial representation of soil moisture: potential added value of SMOS disaggregated 1 km resolution “all weather” product

  • S. Khodayar,
  • S. Khodayar,
  • A. Coll,
  • E. Lopez-Baeza

DOI
https://doi.org/10.5194/hess-23-255-2019
Journal volume & issue
Vol. 23
pp. 255 – 275

Abstract

Read online

This study uses the synergy of multi-resolution soil moisture (SM) satellite estimates from the Soil Moisture Ocean Salinity (SMOS) mission, a dense network of ground-based SM measurements, and a soil–vegetation–atmosphere transfer (SVAT) model, SURFEX (externalized surface), module ISBA (interactions between soil, biosphere and atmosphere), to examine the benefits of the SMOS level 4 (SMOS-L4) version 3.0, or “all weather” high-resolution soil moisture disaggregated product (SMOS-L43.0; ∼1 km). The added value compared to SMOS level 3 (SMOS-L3; ∼25 km) and SMOS level 2 (SMOS-L2; ∼15 km) is investigated. In situ SM observations over the Valencia anchor station (VAS; SMOS calibration and validation – Cal/Val – site in Europe) are used for comparison. The SURFEX (ISBA) model is used to simulate point-scale surface SM (SSM) and, in combination with high-quality atmospheric information data, namely from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Système d'analyse fournissant des renseignements atmosphériques à la neige (SAFRAN) meteorological analysis system, to obtain a representative SSM mapping over the VAS. The sensitivity to realistic initialization with SMOS-L43.0 is assessed to simulate the spatial and temporal distribution of SSM. Results demonstrate the following: (a) All SMOS products correctly capture the temporal patterns, but the spatial patterns are not accurately reproduced by the coarser resolutions, probably in relation to the contrast with point-scale in situ measurements. (b) The potential of the SMOS-L43.0 product is pointed out to adequately characterize SM spatio-temporal variability, reflecting patterns consistent with intensive point-scale SSM samples on a daily timescale. The restricted temporal availability of this product dictated by the revisit period of the SMOS satellite compromises the averaged SSM representation for longer periods than a day. (c) A seasonal analysis points out improved consistency during December–January–February and September–October–November, in contrast to significantly worse correlations in March–April–May (in relation to the growing vegetation) and June–July–August (in relation to low SSM values < 0.1 m3 m−3 and low spatial variability). (d) The combined use of the SURFEX (ISBA) SVAT model with the SAFRAN system, initialized with SMOS-L43.0 1 km disaggregated data, is proven to be a suitable tool for producing regional SM maps with high accuracy, which could be used as initial conditions for model simulations, flood forecasting, crop monitoring and crop development strategies, among others.