Нанотехнологии в строительстве (Jun 2020)

Assessment of the colloidal system with nanoparticles influence on wettability of carbonate rock surface

  • Sergeev V.V.,
  • Tanimoto K.,
  • Abe M.,
  • Sharapov R.R.,
  • Zeigman Y.V.

DOI
https://doi.org/10.15828/2075-8545-2020-12-3-166-173
Journal volume & issue
Vol. 12, no. 3
pp. 166 – 173

Abstract

Read online

The wettability of a surface of channels filtering liquids and gases under natural conditions of oil and gas reservoirs is one of the parameters that largely determines the filtration. A nature of the filtration channel surface wettability determines a phase permeability, capillary forces and intensity of adsorption at the interface. An ability of the filtration channel surface to be wet by the polar or nonpolar phases of formation fluid and process liquids affects the filtration-capacitive parameters of oil and gas saturated rocks. In this regard, in the development of oil and gas fields, much attention is paid to the study of physicochemical phenomena and processes occurring at the interfaces. An article presents the results of a set of laboratory experiments to study the surface activity of the colloidal system in the form of an emulsion with supercharged nanoparticles. A set of filtration experiments was carried out using the United States Bureau of Mines (USBM) method in order to assess an effect of the emulsion system with nanoparticles on wettability of the surface of oil and gas reservoir rock filtration channels. The research was conducted on rock cores of two oil and gas fields in the Ural-Volga region of the Russian Federation. According to the applied experimental procedure, rock cores were preliminarily maintained under reservoir conditions to give a surface of pore channels the properties close to the natural conditions. After that, the wettability of rocks was assessed by measuring the USBM wettability index before and after filtering the emulsion system with nanoparticles. Analysis of the research results showed that filtration of the emulsion system with high surface activity led to a change in the wettability of rocks from completely hydrophilic (USBM index – 0.60) to completely hydrophobic (USBM index – minus 0.32). The research results allowed to conclude that there is a high potential for application of emulsion systems with supercharged nanoparticles to control the filtration of formation fluids and process liquids in natural oil and gas reservoirs.

Keywords