مجله پژوهشهای علوم و صنایع غذایی ایران (Feb 2024)
Comparison of the Effect of Adding Spirulina platensis Powder on Sensory, Physical, Protein and Iron Properties of Three Different Industrial Products of Bread, Cake and Layered Sweets
Abstract
Introduction Seaweeds contain a high amount of protein, essential amino acids, vitamins, minerals, unsaturated fatty acids such as arachidonic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), natural pigments, macro and micro nutrient compounds. Microalgae Spirulina (Spirulina platensis) is a species with high nutritional value. About 60% to 70% of the dry weight (Spirulina platensis) is protein, which has all the essential amino acids. This is a cyanobacterial microalga that is cultivated all over the world and used as a supplement in the human diet in the form of tablets, powder and cookies, bread, salad and soup. Several studies have been conducted in the field of investigating the effect of microalgae addition in food products. The purpose of the current research was to investigate the effect of this microalgae powder on sensory, physical, protein and iron properties of three different products of bulk bread, cake and layered sweets with different formulations. Materials and Methods Spirulina microalgae dry powder in 0.25%, 0.5%, 0.75%, 1% and 1.25% was added to the formula of three products: bulk bread, layered pastry, and cake. From each product, a sample without microalgae powder was also prepared and considered as a control. The treatments were evaluated in terms of sensory, color, texture, protein and iron content. Sensory evaluation was carried out by 30 panelists using 7 hedonic points to evaluate the color, flavor, texture, smell and overall acceptance. The color of the surface of the samples was done with a Minolta Chroma Meter (CR-300 Minolta Japan). The results calculated based on L* (whiteness/darkness), a*(redness/greenness) and b*(blueness/yellowness). Hardness of samples was measured with Texture Analyzer TA-XT2 (Stable Micro Systems, Surrey, England) and P/0.5 cylindrical probe (12.5 mm diameter) with 30 kg load cell. Protein of the samples was measured by Kjeldahl method and the amount of iron was measured according to the standard method of AOAC 999.11. All analyses were performed in three repetitions and one-way ANOVA and Tukey's test were used to compare the means. Results and Discussion The results showed that the behavior of spirulina microalgae in changing the characteristics of the three products is different, and this difference is especially significant in sensory characteristics. The addition of spirulina microalgae increased the amount of protein and iron in different treatments. This increase for protein in bread, cake and sweets was about 1, 0.6 and 1.2 percent, respectively. Also, the amount of iron in treatments containing microalgae in bread, cake, and layered sweets was 4, 5, and 3 mg/kg, respectively. Spirulina microalgae is basically known as an aquatic plant with high protein and iron. The microalgae used in this research contained a high amount of protein (67.97%) and 29.5 mg/100 grams of iron, so adding this microalga to the samples increased the amount of protein and iron. Sensory evaluation of the samples showed that all three products had an acceptable acceptance score. However, in comparison among the three products of bread, cake and layered sweets, bread had a lower score than the other two products. The instrumental analysis of L*, a*, b* color indices showed that the increase of spirulina caused green color in the treatments and this color change is more significant in the bread sample. Also, the results of texture analysis showed that the addition of spirulina reduces the hardness of samples containing spirulina. It can be concluded that spirulina microalgae can be used to improve texture, color, and also increase the amount of protein and iron in products.
Keywords