Physical Factors Affecting the Scale-Up of Vegetative Insecticidal Protein (Vip3A) Production by <i>Bacillus thuringiensis</i> Bt294
Kwanruthai Malairuang,
Pumin Nutaratat,
Borworn Werapan,
Somjit Komwijit,
Chutchanun Trakulnaleamsai,
Netnapa Phosrithong,
Amporn Rungrod,
Boonhiang Promdonkoy,
Wai Prathumpai
Affiliations
Kwanruthai Malairuang
Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
Pumin Nutaratat
Department of Biology, Faculty of Science and Digital Innovation, Thaksin University, Pa Phayom, Phatthalung 93210, Thailand
Borworn Werapan
Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
Somjit Komwijit
Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
Chutchanun Trakulnaleamsai
Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
Netnapa Phosrithong
Forest Entomology and Microbiology Research Group, Forest and Plant Conservation Research Office, Department of National Parks, Wildlife and Plant Conservation, 61 Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand
Amporn Rungrod
Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
Boonhiang Promdonkoy
Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
Wai Prathumpai
Biocontrol Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
Vip3A (vegetative insecticidal protein) is a representative member of the Vip3 family, which is widely used for lepidopteran pest control. This Vip3A protein, a non-growth-associated protein, is an effective bioinsecticide against insect pests, but there is relatively little information about its production processes at large scales. Hence, the effects of environmental factors on Vip3A production by Bacillus thuringiensis Bt294 (antifoam agents, shaking speeds, agitation and aeration rates), as well as controlling physical conditions such as the lowest point of dissolved oxygen and controlling of culture pH, were observed in shaking flasks and bioreactors. The results showed that antifoam agents, flask types and shaking speeds had significant effects on Vip3A and biomass production. Cultivation without pH control and DO control in 5 L bioreactors at lower agitation and aeration rates, which was not favorable for biomass production, resulted in a high Vip3A protein production of 5645.67 mg/L. The scale-up studies of the Vip3A protein production in a pilot-scale 750 L bioreactor gave 3750.0 mg/L. Therefore, this study demonstrated the significant effects of agitation, aeration rates and culture pH on Vip3A production by B. thuringiensis Bt294. Balancing of physical conditions was necessary for obtaining the highest yield of Vip3A by slowing down the production rate of biomass. Moreover, this Vip3A protein has high potential as a bioinsecticide for lepidopteran pest control in organic crops. This information will be important for significantly increasing the Vip3A protein concentration by the bacterium and will be useful for field application at a lower cost.