Fermentation (Dec 2022)

Ferrous-Iron-Activated Sulfite-Accelerated Short-Chain Fatty Acid Production from Waste-Activated Sludge Fermentation: Process Assessment and Underlying Mechanism

  • Fang Cao,
  • Xujiang Guo,
  • Xiaoyun Yin,
  • Zhixuan Cui,
  • Shuli Liu,
  • Aijuan Zhou

DOI
https://doi.org/10.3390/fermentation9010020
Journal volume & issue
Vol. 9, no. 1
p. 20

Abstract

Read online

To break the bottlenecks of slow hydrolysis and low acid production efficiency of waste-activated sludge (WAS) in the traditional anaerobic fermentation process, this study investigated the employment of ferrous-iron (Fe(II))-activated sulfite to produce hydroxyl, sulfate, and other highly oxidizing radicals on WAS floc cracking and short-chain fatty acid (SCFAs) production during anaerobic fermentation. The effect of the dosage ratio of Fe(II)/S(IV) was also studied. Results showed that the combined pretreatment of Fe(II)-activated sulfite significantly promoted the exfoliation of extracellular polymers and the subsequent SCFAs production. The highest concentration of SCFAs reached 7326.5 mg COD/L under the optimal dosage of 1:2 for Fe(II)/S(IV), which was 1.1~2.1 times higher than that of other research groups. Meanwhile, the analysis by 3D fluorescence spectroscopy and EPR (electron paramagnetic resonance) showed that Fe(II)-activated sulfite had a synergistic effect on the rupture of sludge cells and the stripping of extracellular polymers, with SO4− and OH as the key radicals generated and being much stronger in the 1:1 and 1:2 groups. High-throughput sequencing showed that the Fe(II)-activated sulfite system significantly changed the functional microbial diversity. The anaerobic fermentation bacteria and sulfate-reducing bacteria were significantly enriched. The underlying mechanism of Fe(II)-activated sulfite oxidation and molecular ecological network of key microbiomes were unveiled.

Keywords