Food Science & Nutrition (Aug 2022)

Insight into the protein degradation during the broad bean fermentation process

  • Hongbin Lin,
  • Binbin Zhou,
  • Jianhua Zhao,
  • Shiqi Liao,
  • Jinlin Han,
  • Jiaxing Fang,
  • Ping Liu,
  • Wenwu Ding,
  • Zhenming Che,
  • Min Xu

DOI
https://doi.org/10.1002/fsn3.2879
Journal volume & issue
Vol. 10, no. 8
pp. 2760 – 2772

Abstract

Read online

Abstract Broad bean fermentation is of vital importance in PixianDouban (PXDB) production, as well as a key process for microorganisms to degrade protein, which lays the foundation for the formation of PXDB flavor. In this study, two fungi and bacteria were screened, and their morphology, molecular biology, growth, and enzyme production characteristics were analyzed, and then they were applied to the broad bean fermentation simulation system. The protein, peptide, amino acid, amino nitrogen, and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE) in the system were evaluated. The results showed that the four microorganisms were Aspergillus oryzae, Aspergillus jensenii, Staphylococcus gallinarum, and Enterobacter hormaeche. Aspergillus oryzae had the highest protease activity at pH 7.0, while the other three strains had better enzyme activity stability under neutral acidic conditions. And the total protein (F1 and F2 were 18.32 g/100 g, 19.15 g/100 g, respectively), peptides (11.79 ± 0.04 mg/g and 12.06 ± 0.04 mg/g), and amino acids (55.12 ± 2.78 mg/g and 54.11 ± 1.97 mg/g) of the fungus experimental groups (F) were higher than the bacterial experimental groups (B). In addition, the enzyme system produced by fungi exhibited a stronger ability for albumin (20 kDa) and glutenin (<30 kDa) deterioration in neutral conditions, while the bacterial enzyme system was more efficient in degrading albumin (<30 kDa) and glutenin (20–30 kDa) in acidic conditions, as indicated by SDS‐PAGE. These findings showed that both bacteria and fungi played an important role in the degradation of protein in different fermentation stages of broad bean fermentation. Practical applications There is a lack of comprehensive understanding of the protein composition and protein degradation mechanism of broad beans in the fermentation stage of PXDB. This research work explored the differences in the degradation of PXDB fermented protein by different microorganisms, and provided a theoretical basis for optimizing the production of PXDB and improving the quality of PXDB.

Keywords