Stochastic Systems (Jan 2011)

Lévy-driven polling systems and continuous-state branching processes

  • Michel Mandjes,
  • Kamil Marcin Kosiński,
  • Jevgenijs Ivanovs,
  • Onno Boxma

Journal volume & issue
Vol. 1, no. 2
pp. 411 – 436

Abstract

Read online

In this paper we consider a ring of N ≥ 1 queues served by a single server in a cyclic order. After having served a queue (according to a service discipline that may vary from queue to queue), there is a switch-over period and then the server serves the next queue and so forth. This model is known in the literature as a polling model.Each of the queues is fed by a non-decreasing Lévy process, which can be different during each of the consecutive periods within the server's cycle. The N-dimensional Lévy processes obtained in this fashion are described by their (joint) Laplace exponent, thus allowing for non-independent input streams. For such a system we derive the steady-state distribution of the joint workload at embedded epochs, i.e. polling and switching instants. Using the Kella-Whitt martingale, we also derive the steady-state distribution at an arbitrary epoch.Our analysis heavily relies on establishing a link between fluid (Lévy input) polling systems and multi-type Jiřina processes (continuous-state discrete-time branching processes). This is done by properly defining the notion of the branching property for a discipline, which can be traced back to Fuhrmann and Resing. This definition is broad enough to contain the most important service disciplines, like exhaustive and gated.

Keywords