Petroleum Exploration and Development (Jun 2021)

The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China

  • Anjiang SHEN,
  • Wenzhi ZHAO,
  • Anping HU,
  • Hui WANG,
  • Feng LIANG,
  • Yongsheng WANG

Journal volume & issue
Vol. 48, no. 3
pp. 555 – 568

Abstract

Read online

A new method for reconstructing the geological history of hydrocarbon accumulation is developed, which are constrained by U-Pb isotope age and clumped isotope (Δ47) temperature of host minerals of hydrocarbon-bearing inclusions. For constraining the time and depth of hydrocarbon accumulation by the laser in-situ U-Pb isotope age and clumped isotope temperature, there are two key steps: (1) Investigating feature, abundance and distribution patterns of liquid and gaseous hydrocarbon inclusions with optical microscopes. (2) Dating laser in-situ U-Pb isotope age and measuring clumped isotope temperature of the host minerals of hydrocarbon inclusions. These technologies have been applied for studying the stages of hydrocarbon accumulation in the Sinian Dengying gas reservoir in the paleo-uplift of the central Sichuan Basin. By dating the U-Pb isotope age and measuring the temperature of clumped isotope (Δ47) of the host minerals of hydrocarbon inclusions in dolomite, three stages of hydrocarbon accumulation were identified: (1) Late Silurian: the first stage of oil accumulation at (416±23) Ma. (2) Late Permian to Early Triassic: the second stage of oil accumulation between (248±27) Ma and (246.3±1.5) Ma. (3) Yanshan to Himalayan period: gas accumulation between (115±69) Ma and (41±10) Ma. The reconstructed hydrocarbon accumulation history of the Dengying gas reservoir in the paleo-uplift of the central Sichuan Basin is highly consistent with the tectonic-burial history, basin thermal history and hydrocarbon generation history, indicating that the new method is a reliable way for reconstructing the hydrocarbon accumulation history.

Keywords