New Journal of Physics (Jan 2013)
Forces from the rear: deformed microtubules in neuronal growth cones influence retrograde flow and advancement
Abstract
The directed motility of growth cones at the tip of neuronal processes is a key function in neuronal path-finding and relies on a complex system of interacting cytoskeletal components. Despite intensive research in this field, many aspects of the mechanical roles of actin structures and, in particular, of microtubules throughout this process remain unclear. Mostly, force generation is ascribed to actin–myosin-based structures such as filopodia bundles and the dynamic polymer gel within the lamellipodium. Our analysis of microtubule buckling and deformation in motile growth cones reveals that extending microtubule filaments contribute significantly to the overall protrusion force. In this study, we establish a relationship of the local variations in stored bending energy and deformation characteristics to growth cone morphology and retrograde actin flow. This implies the relevance of microtubule pushing and deformation for general neurite advancement as well as steering processes.