Petroleum Exploration and Development (Aug 2023)

Subaqueous volcanic eruptive facies, facies model and its reservoir significance in a continental lacustrine basin: A case from the Cretaceous in Chaganhua area of southern Songliao Basin, NE China

  • Xuanlong SHAN,
  • Hansheng MU,
  • Yuhu LIU,
  • Ruilei LI,
  • Jianfeng ZHU,
  • Yunqian SHI,
  • Qinglei LENG,
  • Jian YI

Journal volume & issue
Vol. 50, no. 4
pp. 826 – 839

Abstract

Read online

The conventional lithofacies and facies model of subaerial and marine pyroclastic rocks cannot reflect the characteristics of subaqueous volcanic edifice in lacustrine basins. In order to solve this problem, the lithofacies of subaqueous eruptive pyroclastic rocks is discussed and the facies model is established by taking the tuff cone of Cretaceous Huoshiling Formation in the Chaganhua area of the Changling fault depression, Songliao Basin as the research object. The results indicate that the subaqueous eruptive pyroclastic rocks in the Songliao Basin can be divided into two facies and four subfacies. The two facies are the subaqueous explosive facies and the volcanic sedimentary facies that is formed during the eruption interval. The subaqueous explosive facies can be further divided into three subfacies: gas-supported hot pyroclastic flow subfacies, water-laid density current subfacies and subaqueous fallout subfacies. The volcanic sedimentary facies consists of pyroclastic sedimentary rocks containing terrigenous clast subfacies. A typical facies model of the tuff cone that is formed by subaqueous eruptions in the Songliao Basin was established. The tuff cone is generally composed of multiple subaqueous eruption depositional units and can be divided into two facies associations: near-source facies association and far-source facies association. The complete vertical succession of one depositional unit of the near-source facies association is composed of pyroclastic sedimentary rocks containing terrigenous clast subfacies, gas-supported hot pyroclastic flow subfacies, water-laid density current subfacies and subaqueous fallout subfacies from bottom to top. The depositional unit of the far-source facies association is dominated by the subaqueous fallout subfacies and contains several thin interlayered deposits of the water-laid density current subfacies. The gas-supported hot pyroclastic flow subfacies and the pyroclastic sedimentary rocks containing terrigenous clast subfacies are favorable subaqueous eruptive facies for reservoirs in continental lacustrine basins.

Keywords