Теория и практика переработки мяса (Apr 2022)

Methods for nonparametric statistics in scientific research. Overview. Part 2

  • M. A. Nikitina,
  • I. M. Chernukha

DOI
https://doi.org/10.21323/2414-438X-2022-7-1-42-57
Journal volume & issue
Vol. 7, no. 1
pp. 42 – 57

Abstract

Read online

The use of nonparametric methods in scientific research provides a number of advantages. The most important of these advantages are versatility and a wide range of such methods. There are no strong assumptions associated with nonparametric tests, which means that there is little chance of assumptions being violated, i. e. the result is reliable and valid. Nonparametric tests are widely used because they may be applied to experiments for which it is not possible to obtain quantitative indicators (descriptive studies) and to small samples. The second part of the article describes nonparametric goodness-of-fit tests, i. e. Pearson’s test, Kolmogorov test, as well as tests for homogeneity, i. e. chi-squared test and Kolmogorov-Smirnov test. Chi-squared test is based on a comparison between the empirical (experimental) frequencies of the indicator under study and the theoretical frequencies of the normal distribution. Kolmogorov-Smirnov test is based on the same principle as Pearson’s chi-squared test, but involves comparing the accumulated frequencies of the experimental and theoretical distributions. Pearson’s chi-squared test and Kolmogorov test may also be used to compare two empirical distributions for the significance of differences between them. Kolmogorov test based on the accumulation of empirical frequencies is more sensitive to differences and captures those subtle nuances that are not available in Pearson’s chi-squared test. Typical errors in the application of these tests are analyzed. Examples are given, and step-by-step application of each test is described. With nonparametric methods, researcher receives a working tool for statistical analysis of the results.

Keywords