Hydrology and Earth System Sciences (Jun 2020)
Changing global cropping patterns to minimize national blue water scarcity
Abstract
Feeding a growing population with global natural-resource constraints becomes an increasingly challenging task. Changing spatial cropping patterns could contribute to sustaining crop production and mitigating water scarcity. Previous studies on water saving through international food trade focussed either on comparing water productivities among food-trading countries or on analysing food trade in relation to national water endowments. Here, we consider, for the first time, how both differences in national average water productivities and water endowments can be considered to analyse comparative advantages of countries for different types of crop production. A linear-optimization algorithm is used to find modifications in global cropping patterns that reduce national blue water scarcity in the world's most severely water-scarce countries, while keeping global production of each crop unchanged and preventing any increase in total irrigated or rainfed harvested areas in each country. The results are used to assess national comparative advantages and disadvantages for different crops. Even when allowing a maximum expansion of the irrigated or rainfed harvested area per crop per country of only 10 %, the blue water scarcity in the world's most water-scarce countries can be greatly reduced. In this case, we could achieve a reduction of the global blue water footprint of crop production of 21 % and a decrease of the global total harvested and irrigated areas of 2 % and 10 % respectively. Shifts in rainfed areas have a dominant share in reducing the blue water footprint of crop production.