New Journal of Physics (Jan 2012)

Quantum interference-induced stability of repulsively bound pairs of excitations

  • Lea F Santos,
  • M I Dykman

DOI
https://doi.org/10.1088/1367-2630/14/9/095019
Journal volume & issue
Vol. 14, no. 9
p. 095019

Abstract

Read online

We study the dynamics of two types of pairs of excitations which are bound despite their strong repulsive interaction. One corresponds to doubly occupied sites in one-dimensional Bose–Hubbard systems, the so-called doublons. The other is pairs of neighboring excited spins in anisotropic Heisenberg spin-1/2 chains. We investigate the possibility of decay of the bound pairs due to resonant scattering by a defect or due to collisions of the pairs. We find that the amplitudes of the corresponding transitions are very small. This is the result of destructive quantum interference and explains the stability of the bound pairs.