IEEE Journal of the Electron Devices Society (Jan 2020)

Investigation of Negative DIBL Effect and Miller Effect for Negative Capacitance Nanowire Field-Effect-Transistors

  • Weixing Huang,
  • Huilong Zhu,
  • Zhenhua Wu,
  • Xiaogen Yin,
  • Qiang Huo,
  • Kunpeng Jia,
  • Yangyang Li,
  • Yongkui Zhang

DOI
https://doi.org/10.1109/JEDS.2020.3015492
Journal volume & issue
Vol. 8
pp. 879 – 884

Abstract

Read online

In this study, the negative DIBL (N-DIBL), negative differential resistance (NDR), and Miller effect of a negative capacitance nanowire filed-effect-transistor (negative capacitance (NC) NWFET) were analyzed by employing the custom-built SPICE model. In the simulation, the minimum subthreshold swing (SS) reduced to 40 mV/decade with negligible hysteresis, and the on-current amplified by approximately three times. The N-DIBL effect was analyzed by building a model, and the results indicated that the N-DIBL is negatively correlated with the SS. Hence, it is indispensable to make trade-offs between the N-DIBL and SS in NC NWFET applications. Moreover, the Miller effect of a NCFET-based inverter was investigated for the first time. The Miller effect of the NC NWFET-based inverter was considerably improved owing to a high on-current and negative internal gate voltage (when external gate voltage is set to 0V), which is beneficial for high-speed circuit building based on NC NWFETs. The overshoot of the NC NWFET-based inverter is ~43.1% less than that of the NWFET-based inverter, and the propagation delay of the NC NWFET-based inverter is ~73.1% less than that of the NWFET-based inverter at ferroelectric thickness $\text{T}_{\mathrm{ FE}}=3$ nm.

Keywords