مجله پژوهشهای علوم و صنایع غذایی ایران (Mar 2020)
پیش بینی برخی ویژگیهای کیفی میوه انبه رقم کلک سرخ با استفاده از پردازش تصاویر رنگی و شبکههای عصبی مصنوعی
Abstract
درجهبندی میوه از نظر ویژگیهای کیفی از جمله سفتی، مواد جامد محلول و اسیدیته، بهصورت غیرمخرب در امر بازارپسندی آن تأثیر بهسزایی دارد. در این پژوهش با استفاده از ترکیب تکنیکهای پردازش تصویر و هوش مصنوعی، پیشبینی ویژگیهای کیفی انبه رقم کلک سرخ مورد بررسی قرار گرفته است. نمونههای مورد بررسی در دو تیمار دمایی 5، 15 و تیمار شاهد (24 درجه سانتیگراد) به مدت 48 ساعت قرار گرفتند. پس از آن به مدت 14 روز بهصورت یک روز در میان تصویربرداری از نمونهها انجام و ویژگیهای رنگی از نواحی مورد نظر در محیط رنگی L*a*b استخراج شدند. پس از هر مرحله تصویربرداری میزان اسیدیته، قند و سفتی بافت اندازهگیری شد. بهمنظور بررسی ارتباط بین خصوصیات فیزیکوشیمیایی و مشخصههای تصویری بین نمونهها، شبکه عصبی چندلایه پرسپترون ایجاد و آموزش داده شد. از این شبکه تربیت شده بهمنظور پیش بینی ویژگیهای فیزیکی از روی مشخصههای رنگی استفاده شد. متغیرهای ورودی به شبکه شامل تیمار دمایی در سه سطح (شاهد، 15 و 5 درجه سانتیگراد)، کانالهای رنگی (L, a, b) و میزان انحراف معیار کانالهای رنگی (stdL, stda, stdb) است. متغیرهای خروجی نیز شامل قند، اسیدیته و سفتی بافت است. نتایج حاصل از پیشبینی مدل شبکه عصبی نشان داد که دقت مدل در مرحله آزمون برای پیشبینی فاکتورهای اسیدیته، قند و سفتی بافت بهترتیب برابر با 45، 85، 88 درصد است؛ بنابراین هرچند دقت مدل شبکه عصبی برای پیشبینی اسیدیته از روی فاکتورهای رنگی نمونههای انبه پایین بود، اما شبکه عصبی مبتنی بر ماشین بینایی قادر به پیشبینی فاکتورهای سفتی و قند با دقت بالا است.
Keywords