New Journal of Physics (Jan 2014)
Rapid steady-state convergence for quantum systems using time-delayed feedback control
Abstract
We propose a time-delayed feedback control scheme for open quantum systems that can dramatically reduce the time to reach steady state. No measurement is performed in the feedback loop, and we suggest a simple all-optical implementation for a cavity QED system. We demonstrate the potential of the scheme by applying it to a driven and dissipative Dicke model, as recently realized in a quantum gas experiment. The time to reach steady state can be reduced by two orders of magnitude for the parameters taken from the experiment, making previously inaccessible long time attractors reachable within typical experimental run times. The scheme also offers the possibility of slowing down the dynamics, as well as qualitatively changing the phase diagram of the system.
Keywords