Shipin Kexue (Jun 2023)

Evaluation of Anti-inflammatory Effect of Camellia fascicularis Polyphenols Using Zebrafish Model and Network Pharmacology

  • GAO Miaozi, TANG Junrong, DENG Jia, XIANG Jianying, KAN Huan, ZHAO Ping, ZHANG Yingjun, ZHANG Guiliang, LIU Yun

DOI
https://doi.org/10.7506/spkx1002-6630-20220525-318
Journal volume & issue
Vol. 44, no. 11
pp. 134 – 142

Abstract

Read online

In order to investigate the molecular mechanism behind the anti-inflammatory effect of Camellia fascicularis polyphenols (CFP), the anti-inflammatory activity of CFP was evaluated using the zebrafish model and the polyphenol composition was analyzed using ultra-performance liquid chromatography combined with quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Then, the targets of effective ingredients and inflammation-related targets were predicted using the SwissTargetPrediction and DisGeNET databases. The protein-protein interaction (PPI) network was constructed, and gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the STRING and DAVID databases. Furthermore, molecular docking and visualization of key components and core proteins were performed using the AutoDockTools and PyMOL software. The results showed that 21 phenolic compounds were identified from Camellia fascicularis and 32 intersection targets were selected. The GO function and KEGG pathway enrichment analysis indicated that CFP exerted anti-inflammatory effects by acting on core targets as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), prostaglandin-endoperoxide synthase 2 (PTGS2) and matrix metallopeptidase 2 (MMP2) through biological processes including positive regulation of cell proliferation, cytoplasm, adenosine triphosphate (ATP) binding, and in turn regulating signaling pathways like arachidonic acid metabolism, hypoxia inducible factor-1 (HIF-1) signaling pathway and platelet activation. Molecular docking results demonstrated excellent binding activity between the key components in CFP and inflammation-related targets. The research could provide a theoretical reference for the development of anti-inflammatory products with polyphenol components of C. fascicularis.

Keywords