IEEE Journal of the Electron Devices Society (Jan 2017)
Monolithic Fabrication of InGaAs/GaAs/AlGaAs Multiple Wavelength Quantum Well Laser Diodes via Impurity-Free Vacancy Disordering Quantum Well Intermixing
Abstract
InGaAs/GaAs/AlGaAs multiple wavelength quantum well (QW) semiconductor laser diodes (LDs) have been fabricated by impurity-free vacancy disordering (IFVD) QW intermixing (QWI) method. The IFVD-QWI process was carried out by sputtering-depositing SiO2 mask layers on top of the complete InGaAs/GaAs/AlGaAs QW laser structure, emitting at 980 nm wavelength, and followed by a rapid thermal annealing at 880 °C for 60 s. The lasing wavelength of the devices fabricated from the intermixed wafer was blue-shifted with the increase of the mask layer thickness. The maximum emission wavelength blue shift of a processed as-cleaved laser reached 112 nm with the output-power more than 1000 mW. By using such an IFVD-QWI technique, multi-wavelength integrated LDs have also been successfully fabricated from a single chip.
Keywords