Petroleum Exploration and Development (Apr 2020)
Anisotropy interpretation and the coherence research between resistivity and acoustic anisotropy in tight sands
Abstract
Aiming at the problem of anisotropy inversion of tight sands, a new method for extracting resistivity anisotropy from array laterolog and micro-resistivity scanning imaging logging is proposed, and also the consistency of electric and acoustic anisotropy is discussed. Array laterolog includes resistivity anisotropy information, but numerical simulation shows that drilling fluid invasion has the greatest influence on the response, followed by the relative dip angle θ and electrical anisotropy coefficient λ. A new inversion method to determine ri, Rxo, Rt and λ is developed with the given θ and initial values of invasion radius ri, flushed zone resistivity Rxo, in-situ formation resistivity Rt. Micro-resistivity image can also be used for describing the resistivity distribution information in different directions, and the electrical characteristics from micro-resistivity log in different azimuths, lateral and vertical, can be compared to extract electric anisotropy information. Directional arrangement of mineral particles in tight sands and fracture development are the intrinsic causes of anisotropy, which in turn brings about anisotropy in resistivity and acoustic velocity, so the resistivity anisotropy and acoustic velocity anisotropy are consistent in trends. Analysis of log data of several wells show that the electrical anisotropy and acoustic anisotropy extracted from array laterolog, micro-resistivity imaging and cross-dipole acoustic logs respectively are consistent in trend and magnitude, proving the inversion method is accurate and the anisotropies of different formation physical parameters caused by the intrinsic structure of tight sand reservoir are consistent. This research provides a new idea for evaluating anisotropy of tight sands. Key words: tight sands, anisotropy, petrophysics, array laterolog, micro-resistivity imaging, log interpretation