مجله پژوهشهای علوم و صنایع غذایی ایران (Feb 2024)
Evaluation of Chemical and Sensory Properties of Low-fat German Sausages Produced by Maltodextrin
Abstract
Introduction In recent years, increasing consumer awareness of the dangers of consuming high-fat products, sensitivity to proper nutritional patterns and the impact of health factors has increased consumer demand for low-fat or free-fat foods. Scientific researchers have provided a great quantity of evidence between the consumption of high-fat products and the development of diseases such as obesity, hardening of the arteries, chronic hypertension, etc. Fat removal is not an easy task because fat, in addition to nutritional aspects, affect rheological and sensory properties such as mouth feel and texture properties of the final product. Using alternative materials that can be completely or partially replaced fat in the formulation of low-fat products by imitating the properties of fat is great important. Unlike fat, which its high consumption causes many problems; fiber can play a vital role in many of the nutritional, functional, and sensory properties of food products, Some types of fiber act as fat substitutes, while producing less energy, provide a large effect of fat function properties. Increasing consumption of easy-cook meat products such as sausages induced replacement the fat content in the formulation of these products, by fat substitutes such as maltodextrin. The aim of this study was to evaluate the chemical and sensory properties of low fat German sausages produced by maltodextrin. Materials and Methods In this study, 0, 6, 12, and 18% of fat was replaced by maltodextrin in the formulation of German sausage. The chemical and sensory properties were then investigated. Chemical properties including moisture, protein, ash, and fat were accomplished according to the ISIRI standard. Evaluation of sensory properties was done by 5-point hedonic method according to Click et al. (2006). Data analysis was performed using SPSS software in a completely randomized design with a 95% confidence level. Results and Discussion The results showed that with increasing the level of maltodextrin, the amount of moisture, ash, and starch of sausage samples increased significantly. As the concentration of maltodextrin increased, the protein content of the samples decreased. The highest protein content observed in the control sample and the sample contained 6% maltodextrin and in contrary, the lowest protein content was in the sample containing 18% maltodextrin and there was no statistically significant difference between the test samples (p>0.05). Changes in maltodextrin concentrations had a significant effect on the fat content of sausage samples so that with increasing the concentration of maltodextrin in the sausage formulation, the fat content of the samples decreased (p≤0.05). Also, with increasing the percentage of maltodextrin replacement in German sausage samples, the cooking yield decreased significantly (p≤0.05). In the evaluation of sensory properties, it was found that the use of maltodextrin reduced the score in all parameters studied so that the lowest score in terms of color, texture, flavor, and total acceptance of sausage samples was related to sample with 18% maltodextrin replacement. Conclusion The vital role of the effect of dietary fiber on improving and managing the health has been proven by researchers for many years. Due to the need to reduce fat in products such as sausages, which considered as a popular meat product and based on the results observed in the present study, it is recommended to use maltodextrin fiber at the level of 6% as a fat substitute in the formulation of German sausages.
Keywords