New Journal of Physics (Jan 2014)

Strong localization in defective carbon nanotubes: a recursive Greenʼs function study

  • Fabian Teichert,
  • Andreas Zienert,
  • Jörg Schuster,
  • Michael Schreiber

DOI
https://doi.org/10.1088/1367-2630/16/12/123026
Journal volume & issue
Vol. 16, no. 12
p. 123026

Abstract

Read online

We study the transport properties of defective single-walled armchair carbon nanotubes (CNTs) on a mesoscopic length scale. Monovacancies and divancancies are positioned randomly along the CNT. The calculations are based on a fast, linearly scaling recursive Greenʼs function formalism that allows us to treat large systems quantum-mechanically. The electronic structure of the CNT is described by a density-functional-based tight-binding model. We determine the influence of the defects on the transmission function for a given defect density by statistical analysis. We show that the system is in the regime of strong localization (i.e. Anderson localization). In the limit of large disorder the conductance scales exponentially with the number of defects. This allows us to extract the localization length. Furthermore, we study in a systematic and comprehensive way, how the conductance, the conductance distribution, and the localization length depend on defect probability, CNT diameter, and temperature.

Keywords